Click here to sign in with or
by Zhang Nannan, Chinese Academy of Sciences
Topological photonics is an emerging area that provides unprecedented opportunities for controlling the flow of light in photonic integrated circuits. With the introduction of non-trivial topological phases, a one-way street for light is feasible in photonic crystals (PhCs) and other platforms. Like a tightly regulated one-way traffic lane, light cannot be reflected back in these exotic structures.
However, such one-way transport of light at visible and near-infrared wavelengths may not robust against strong fabrication defects due to insufficient topological protection. Furthermore, poor mode confinement and limited bandwidth hinder the future development of high-density topological photonic integrated circuits.
To solve these problems, in a recent study published in ACS Photonics, Liu Tianji from the Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) of the Chinese Academy of Sciences, collaborating with Satoshi Iwamoto from the University of Tokyo and Yasutomo Ota from Keio University, numerically demonstrated the above 1,000-fold enlargement of topological bandgaps in epsilon-near-zero (ENZ) magneto-optical (MO) PhCs in comparison with previously reported results.
The proposed two-dimensional MO-PhC is composed of triangular MO prisms with a honeycomb lattice embedded in a silicon plate. With an applied magnetic field, non-trivial topological properties are imparted to the opening photonic bandgaps. In general, the topological gap size is extremely small at visible and near-infrared wavelengths, due to very weak responses in naturally occurring MO materials.
Conversely, MO responses can be enhanced by reducing diagonal permittivity constant elements of MO materials with the help of artificial metamaterials. As an extreme case, MO-PhCs with ENZ diagonal permittivity elements lead to a great enlargement of topological gap sizes.
A one-way street for light was built with the combination of two ENZ-MO-PhCs with the opposite magnetization. Unidirectional and backscattering immune transport of light was numerically obtained at the interface between two PhCs. And the transport performance was unchanged even with large-size defects and sharp bends. Explore further Research on the photonic crystal topological state beyond the optical diffraction limit More information: Tianji Liu et al, Topological Band Gaps Enlarged in Epsilon-Near-Zero Magneto-Optical Photonic Crystals, ACS Photonics (2022). DOI: 10.1021/acsphotonics.1c01942 Journal information: ACS Photonics
Provided by Chinese Academy of Sciences Citation: Exotic photonic crystals empower robust one-way transport of light (2022, June 23) retrieved 29 July 2022 from https://phys.org/news/2022-06-exotic-photonic-crystals-empower-robust.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.More from Physics Forums | Science Articles, Homework Help, Discussion
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.