We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.
This article discusses the potential of graphene batteries as energy storage systems in electric vehicles (EVs).
Image Credit: tong patong/Shutterstock.com
Energy storage systems such as batteries play a critical role in EVs, plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). In EVs, batteries act as the only energy source where electrical energy is stored. The major types of batteries currently used in the EVs, PHEVs, and HEVs as energy storage systems include lithium-ion batteries, nickel-metal hydride batteries, lead-acid batteries, and ultracapacitors.
Among them, lithium-ion batteries are used most extensively in EVs owing to their high energy efficiency, high power-to-weight ratio, good performance at high temperatures, and better energy ratio per weight compared to other energy storage systems, which is an extremely significant factor for EV batteries. A lighter battery weight implies greater mileage for EVs with a single charge.
However, the high temperature that develops during battery operation, high cost of production, and issues related to recycling of dead batteries are the major disadvantages of lithium-ion batteries. Thus, the focus has shifted to graphene batteries as energy storage systems for EVs in recent years.
Graphene is referred to as a two-dimensional (2D) structure of graphite, where one flat layer of carbon atoms is organized into a supportive honeycomb lattice. Although graphene can be prepared in several ways, plasma-enhanced chemical vapor deposition (PE-CVD) is the most suitable technique to produce graphene.
The major benefits of the PE-CVD technique include lower operating substrate temperatures and transfer-free and catalyst-free growth. In PE-CVD, a special mixture of gases, including carbon, is heated into a plasma that creates a layer of graphene on a copper or nickel plate. Subsequently, graphene is extracted from the plate.
A number of battery technologies and types can be developed based on graphene. The most promising among them include lithium-metal solid-state batteries, solid-state batteries, supercapacitors, graphene-enhanced lead-acid batteries, graphene sodium-ion batteries, graphene aluminum-ion batteries, and graphene lithium-ion batteries.
Graphene-based materials have high porosity and greater surface area and are extremely strong and lightweight. Additionally, these materials possess high-charging capability and flexibility and are good conductors of thermal and electrical energy, which make them a suitable material to store energy.
The high electrical conductivity of graphene increases the electrode density and accelerates the chemical reaction within the battery, which enables greater power transfer and faster charge speeds with less heat. Graphene also undergoes less degradation compared to lithium while delivering an improved performance, which prolongs the lifespan of EV batteries substantially. Moreover, graphene batteries are also cost-efficient and sustainable compared to other EV batteries.
Among the different graphene-based battery technologies and types, graphene lithium-ion batteries are expected to be implemented in the next 1-3 years, solid-state batteries within the next 4-8 years, and graphene supercapacitors within 10 years. Graphene sodium-ion and graphene aluminum-ion batteries can potentially replace lithium-ion batteries as they are much cheaper and easier to recycle, and sodium and aluminum are more abundant in nature compared to lithium.
Image Credit: Dorxela/Shuttertock.com
Graphene aluminum-ion batteries can become the primary EV battery in the future as graphene aluminum cells can charge 60 times faster compared to lithium-ion cells, and hold significantly more energy than pure aluminum cells. For instance, graphene aluminum-ion cells can recharge an AA battery within a minute and a coin-cell battery in 10 seconds.
There are certain limitations associated with graphene-based batteries despite their benefits as energy storage systems in EVs. The most prominent limitation is the lack of mass-production techniques for manufacturing high-quality graphene batteries. Currently, the production cost of 1 kg graphene ranges between tens and thousands of dollars, which is substantially higher compared to the production cost of activated carbon at $15 per kilogram.
Additionally, the thickness of graphene-based materials is often limited to micrometers, which substantially limits the overall capacity of the battery. Moreover, graphene batteries typically demonstrate poor capacity retention, extremely high first cycle loss at 50%-60%, and low cycling efficiencies at 95%-98% at high current densities.
Furthermore, graphene cannot be switched off as it lacks a bandgap, which implies that there is no place in the material where electrons do not exist. Thus, an artificial bandgap must be engineered in graphene to overcome the challenge.
Although the use of graphene batteries in EVs is currently possible, they are not yet available commercially as more research is required to develop mass production techniques and to further determine the practical abilities of the material. Several companies have shown interest in graphene batteries to power EVs.
For instance, Nanotech Energy has recently received funding from Fubon Financial Holding to develop graphene-enhanced batteries for EVs, while Spain-based Graphenano has collaborated with a China-based player to develop a graphene polymer-based battery that can provide EVs a maximum range of 500 kilometers and a recharge time of fewer than 5 min. In the future, graphene can become a crucial material to develop large-scale energy storage, and graphene batteries remain the most promising EV battery technology.
Yu, A. Graphene Battery as Energy Storage. Stanford University 2017. http://large.stanford.edu/courses/2017/ph240/yu1/
Pistilli, M. (2022, January 10). Is Tesla Making a Graphene Battery? INN. https://investingnews.com/daily/tech-investing/nanoscience-investing/graphene-investing/graphene-battery-tesla/
Maxwell, A. (2022, February 8). Graphene EV Batteries: How Far Away Are We? – Top Charger. Top Charger – EV Charger Reviews and Guides. https://topcharger.co.uk/graphene-ev-batteries-how-far-away-are-we/#13-what-is-the-most-promising-graphene-battery-technology-
Electric Car Batteries and Characteristics. (2021, May 29). Omazaki Group. https://www.omazaki.co.id/en/electric-car-batteries-and-their-characteristics/
Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles. (n.d.). AFDC. https://afdc.energy.gov/vehicles/electric_batteries.html
C, Iclodean. et al. Comparison of Different Battery Types for Electric Vehicles. IOP Conference Series: Materials Science and Engineering 2017. https://iopscience.iop.org/article/10.1088/1757-899X/252/1/012058/pdf#:~:text
Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.
Samudrapom Dam is a freelance scientific and business writer based in Kolkata, India. He has been writing articles related to business and scientific topics for more than one and a half years. He has extensive experience in writing about advanced technologies, information technology, machinery, metals and metal products, clean technologies, finance and banking, automotive, household products, and the aerospace industry. He is passionate about the latest developments in advanced technologies, the ways these developments can be implemented in a real-world situation, and how these developments can positively impact common people.
Please use one of the following formats to cite this article in your essay, paper or report:
Dam, Samudrapom. (2022, February 17). Graphene Batteries in Electric Vehicles. AZoM. Retrieved on July 22, 2022 from https://www.azom.com/article.aspx?ArticleID=21330.
Dam, Samudrapom. "Graphene Batteries in Electric Vehicles". AZoM. 22 July 2022. <https://www.azom.com/article.aspx?ArticleID=21330>.
Dam, Samudrapom. "Graphene Batteries in Electric Vehicles". AZoM. https://www.azom.com/article.aspx?ArticleID=21330. (accessed July 22, 2022).
Dam, Samudrapom. 2022. Graphene Batteries in Electric Vehicles. AZoM, viewed 22 July 2022, https://www.azom.com/article.aspx?ArticleID=21330.
Do you have a review, update or anything you would like to add to this article?
At the Advanced Materials Show 2022, AZoM caught up with the CEO of Cambridge Smart Plastics, Andrew Terentjev. In this interview, we discuss the company's novel technologies and how they could revolutionize how we think about plastics.
At the Advanced Materials Show in June 2022, AZoM spoke with Ben Melrose from International Syalons about the advanced materials market, Industry 4.0, and efforts to move toward net-zero.
At the Advanced Materials Show, AZoM spoke with Vig Sherrill from General Graphene about the future of graphene and how their novel production technique will lower costs to open up a whole new world of applications in the future.
Discover the OTT Parsivel², a laser disdrometer that can be used to measure all precipitation types. It allows users to collect data on the size and speed of falling particles.
Environics offers stand alone permeation systems that can be used for single or multiple disposable permeation tubes.
Grabner Instruments’ MiniFlash FPA Vision Autosampler is a 12-position autosampler. It is an automated accessory designed to be used with the MINIFLASH FP Vision Analyzer.
This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.
Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.
Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.
AZoM.com - An AZoNetwork Site
Owned and operated by AZoNetwork, © 2000-2022