We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.
Self-healing coatings have great applicability and promise in metal corrosion prevention applications due to their excellent performance. In a paper published in the journal ACS Applied Materials & Interfaces, a self-healing superhydrophobic coating was developed.
Study: Robust Self-Healing Graphene Oxide-Based Superhydrophobic Coatings for Efficient Corrosion Protection of Magnesium Alloys. Image Credit: KULLAPONG PARCHERAT/Shutterstock.com
Here researchers mixed polydopamine-functionalized, Cu2+-loaded graphene oxide, polydimethylsiloxane, and octadecylamine, which can restore the coating's superhydrophobic characteristics after physical or chemical degradation.
Superhydrophobic coatings have become increasingly appealing because of their wide range of applications. This includes sensing devices, the biomedical sector, and maritime coatings, especially to prevent corrosion.
Several processing approaches have been employed in past years to create superhydrophobic coatings with a reduced surface-energy layer and coarse microscale/nanoscale architecture. When superhydrophobic coatings come into direct contact with water, the coarse surface traps air and forms a stabilized protecting layer.
Superhydrophobic coatings have emerged as an excellent choice for coating metals for corrosion prevention because of their unique properties. Nonetheless, owing to their sensitive microscale/nanoscale hierarchical architectures, superhydrophobic coatings are prone to losing their superhydrophobic behavior after chemical or physical degradation, severely limiting their use in realistic conditions.
It is therefore critical to develop strong superhydrophobic coatings with self-recoating capabilities.
Based on the intrinsic capacity of creatures to heal themselves, researchers have investigated self-recoating composites that may partially or entirely regain their integral properties after damage.
In contrast to standard protective coatings, a self-recoating layer may regain hydrophilicity by applying heat to the chemically injured surface. Nonetheless, documented self-recoating superhydrophobic coatings have several flaws, such as complicated microstructure healing, reduced self-recovery cycling, and failure to self-heal during usage.
To address these issues, the development of smart self-recoating coatings with specialized functionalities has piqued the attention of scientists from a wide range of industrial domains. As a result, one viable option is to embed the recovery agent in the substrate, such as metallo-organic frameworks, silica, and graphene oxide (GO), permitting regulated delivery of the active ingredient to the defected region of the coating.
GO is obtained from graphitic powder following an oxidation process and exfoliating, and it has a considerable amount of carboxyl, epoxide, and hydroxyl functional groups. GO has garnered considerable interest due to its unique qualities, including outstanding mechanical/chemical stability, a huge contact area, and ideal barrier effectiveness against hostile species.
Unfortunately, GO is susceptible to galvanic corrosion reactions with metallic substrates, potentially leading to severe corrosion. Biopolymers like polydopamine (PDA) may help to prevent galvanic corrosion and fix GO faults.
PDA has emerged as a flexible chemical enhancer with a good attachment to various substrates due to hydrogen bonding between amine and catechol. This affinity can recompense GO faults via bond interactions and heal deteriorated regions via chelation with metallic ions.
Due to its high light-absorbing capacity, PDA may also be utilized to create photothermal self-recoating superhydrophobic coatings. Integrating PDA and GO to create self-recoating anticorrosive coatings with distinct functionality is a promising and practical method.
In this research, the team created a strong self-healing coating with superhydrophobic capabilities out of PDMS, polyamide resin, epoxy resin, and the developed ODA/PDA/rGOCu2+ particles.
After physical or chemical damage, the POPG-Cu2+ coating may concurrently repair its compromised microscopic architecture and recover its superhydrophobic characteristics. When the coating is broken, the microscopic architectures could be automatically healed using dynamic catechol-Cu2+ interaction, and its superhydrophobic characteristics could be promptly regenerated using sunlight to rearrange ODA/PDMS.
Even after undergoing 20 rounds of plasma etching/healing, the developed POPG-Cu2+ coatings maintained superhydrophobic capabilities when exposed to sunlight. The self-recoating ability was a result of ODA/PDMS molecular reorganization and dynamic catechol-Cu2+ interactions.
The POPG-Cu2+ coating demonstrated exceptional self-cleaning and anti-fouling qualities. In addition, the POPG-Cu2+ coating demonstrated good mechanical durability, chemical endurance, and weather tolerance. Notably, after one month in a 3.5 w% sodium chloride solution, the POPG-Cu2+ coating maintained remarkable anticorrosive performance.
The findings of this study give practical direction for developing superhydrophobic coatings with long-lasting anticorrosive properties and excellent self-recoating capabilities.
Li, B., Xue, S., Mu, P., & Li, J. (2022). Robust Self-Healing Graphene Oxide-Based Superhydrophobic Coatings for Efficient Corrosion Protection of Magnesium Alloys. ACS Applied Materials & Interfaces. Available at: https://doi.org/10.1021/acsami.2c06447
Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.
Shaheer is a graduate of Aerospace Engineering from the Institute of Space Technology, Islamabad. He has carried out research on a wide range of subjects including Aerospace Instruments and Sensors, Computational Dynamics, Aerospace Structures and Materials, Optimization Techniques, Robotics, and Clean Energy. He has been working as a freelance consultant in Aerospace Engineering for the past year. Technical Writing has always been a strong suit of Shaheer's. He has excelled at whatever he has attempted, from winning accolades on the international stage in match competitions to winning local writing competitions. Shaheer loves cars. From following Formula 1 and reading up on automotive journalism to racing in go-karts himself, his life revolves around cars. He is passionate about his sports and makes sure to always spare time for them. Squash, football, cricket, tennis, and racing are the hobbies he loves to spend his time in.
Please use one of the following formats to cite this article in your essay, paper or report:
Rehan, Shaheer. (2022, June 24). Self-Healing Superhydrophobic Coating to Prevent Corrosion of Magnesium Alloys. AZoNano. Retrieved on June 24, 2022 from https://www.azonano.com/news.aspx?newsID=39324.
Rehan, Shaheer. "Self-Healing Superhydrophobic Coating to Prevent Corrosion of Magnesium Alloys". AZoNano. 24 June 2022. <https://www.azonano.com/news.aspx?newsID=39324>.
Rehan, Shaheer. "Self-Healing Superhydrophobic Coating to Prevent Corrosion of Magnesium Alloys". AZoNano. https://www.azonano.com/news.aspx?newsID=39324. (accessed June 24, 2022).
Rehan, Shaheer. 2022. Self-Healing Superhydrophobic Coating to Prevent Corrosion of Magnesium Alloys. AZoNano, viewed 24 June 2022, https://www.azonano.com/news.aspx?newsID=39324.
Do you have a review, update or anything you would like to add to this news story?
We speak with researchers behind the latest advancement in graphene hBN research that could boost the development of next-generation electronic and quantum devices.
AZoNano speaks with Dr. Laurene Tetard from the University of Central Florida about her upcoming research into the development of nanotechnology that can detect animal-borne diseases. The hope is that such technology can be used to help rapidly control infected mosquito populations to protect public
AZoNano speaks with Dr. Amir Sheikhi from Pennsylvania State University about his research into creating a new group of nanomaterials designed to capture chemotherapy drugs before they impact healthy tissue, amending a fault traditionally associated with conventional nanoparticles.
The Filmetrics F40 turns your benchtop microscope into an instrument for measuring thickness and refractive index.
Nikalyte’s NL-UHV is a state-of-the-art tool that allows the generation and deposition of nanoparticles in an Ultra-High vacuum onto a sample to create a functionalized surface.
The Filmetrics® F54-XY-200 is a thickness measurement tool created for automated sequence measurement. It is available in various wavelength configuration options, allowing compatibility with a range of film thickness measurement applications.
AZoNano.com - An AZoNetwork Site
Owned and operated by AZoNetwork, © 2000-2022